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Optimal airfoil shapes for low Reynolds number flows
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SUMMARY

Flow over NACA 0012 airfoil is studied at �=4◦ and 12◦ for Re�500. It is seen that the flow is very
sensitive to Re. A continuous adjoint based method is formulated and implemented for the design of
airfoils at low Reynolds numbers. The airfoil shape is parametrized with a non-uniform rational B-splines
(NURBS). Optimization studies are carried out using different objective functions namely: (1) minimize
drag, (2) maximize lift, (3) maximize lift to drag ratio, (4) minimize drag and maximize lift and (5)
minimize drag at constant lift. The effect of Reynolds number and definition of the objective function on
the optimization process is investigated. Very interesting shapes are discovered at low Re. It is found that,
for the range of Re studied, none of the objective functions considered show a clear preference with respect
to the maximum lift that can be achieved. The five objective functions result in fairly diverse geometries.
With the addition of an inverse constraint on the volume of the airfoil the range of optimal shapes, produced
by different objective functions, is smaller. The non-monotonic behavior of the objective functions with
respect to the design variables is demonstrated. The effect of the number of design parameters on the
optimal shapes is studied. As expected, richer design space leads to geometries with better aerodynamic
properties. This study demonstrates the need to consider several objective functions to achieve an optimal
design when an algorithm that seeks local optima is used. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Aerodynamic shape optimization is being increasingly accepted as a design tool. With increasing
computing abilities and better algorithms and strategies more complex design problems are being
undertaken. Several techniques have been tried for carrying out aerodynamic shape optimiza-
tion. Some of the methods are random search methods [1], complex Taylor series expansion
approach [2], automatic differentiation method [3], direct differentiation method [4] and adjoint

∗Correspondence to: S. Mittal, Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur,
UP 208 016, India.

†E-mail: smittal@iitk.ac.in

Copyright q 2008 John Wiley & Sons, Ltd.



356 D. N. SRINATH AND S. MITTAL

based methods [5]. Among the most commonly used methods are gradient based methods in which
a specified objective function is minimized or maximized with respect to design shape parameters.
Of particular interest are adjoint based methods. In these methods the flow equations are adjoined
or augmented to the objective function by the use of Lagrange multipliers. Adjoint based methods
provide a economical framework to work with a large number of design variables. Pioneering
work in these methods can be found in [6–8].

The adjoint based methods can be classified as continuous vs discrete. In the continuous adjoint
method, first the variation of the augmented objective function is derived. The resulting equations
are then discretized. In the discrete adjoint methods the discretization process precedes the variation.
Comparison of the two approaches can be found in [9, 10]. It is seen that as the grid spacing
approaches zero, both methods yield same results. The advantage of the continuous adjoint method
is that once the variation of the equations is found, the same can be utilized for any discretization.

Design methods can be one of the two types: inverse or direct. In an inverse design method the
aerodynamic characteristics are predefined. An example of the inverse problem is the design of an
airfoil shape that results in a certain prescribed pressure distribution. Direct design methods, on
the contrary, attempt to seek a local optima in the design space. An example of the direct problem
is one in which one seeks to find the shape that has the least drag. The possibility of the optimum
being the global optimum depends on the choice of the initial guess in the optimization process.
Multiple local optima can be found by changing the initial guess [11].

Significant research is being carried out in the design of small sized flying vehicles, namely,
micro aerial vehicles [12]. Flow around micro structures are also beginning to form an integral
part of many applications of micro electromechanical systems(MEMS) [13]. Power MEMS [14] is
a rapidly growing field describing microsystems which generate power or pumped heat. Another
area generating lot of interest is the design of micro flying robots [15]. Despite significant interest
in applications at small scales not much data exists, either experimental or numerical, at extremely
low Re.

Significant research has been carried out for airfoils at high Re [16, 17] including optimization
studies [18, 19]. It is well known that airfoils designed for high Reynolds number operation are
not optimal at low Re. A good source of airfoil data at low Re is Carmichael [20]. Thom and
Swart [21] carried out experiments with a R.A.F. 6a airfoil at Re as low as 0.5. Sunada et al. [22]
studied the aerodynamic characteristics of various airfoils at Re=4000, by varying parameters
such as thickness, camber and roughness. They found that, at low Re, thinner airfoils have better
aerodynamic characteristics. Sun and Boyd [23] used a hybrid continuum-particle approach to
compute flow over a 5% thick flat plate at Reynolds number varying between 1 and 200. They
noticed that the lift to drag ratio drops below unity for Reynolds numbers less than 50. They also
notice that the drag coefficient increases with decrease in Re. Kunz [24] observed that the maximum
lift coefficient of airfoils increases with decreasing Re. At very low Reynolds numbers not only
are the optimal airfoils thinner, but the camber also plays a major role. Yagi and Kawahara [25]
carried out drag minimization at Re=250. Starting from a circular cylinder their design cycle led
to an airfoil shape. However, they observed that the shape with minimum drag has a sharp leading
edge and a rounded trailing edge, much like a conventional airfoil placed at 180◦ angle of attack.

There are two main objectives of this study. Firstly, to evaluate the relative performance of
various objective functions to design an optimal airfoil. The second objective is to investigate
the variation in optimal airfoil geometries with Re in the steady laminar flow regime. Flow over
NACA 0012 airfoil is studied at �=4◦ and 12◦ at Re�500. Optimization studies are then carried
out to determine the best shapes for �=4◦ and 12◦. Five different direct objective functions are
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considered. They are (1) to minimize drag, (2) to maximize lift, (3) to maximize the lift to drag
ratio, (4) to maximize lift and minimize drag and (5) to minimize drag at constant lift. A geometric
constraint, namely the preservation of volume is further imposed and the study is repeated. An
unstructured grid is used to accommodate the possible change in airfoil shapes. A mesh moving
scheme [26] is employed to generate grids for updated geometries.

In the present work, a continuous adjoint based method in the context of steady, incompressible
low Reynolds number flows is implemented for airfoil design. A stabilized finite element method
based on the streamline-upwind Petrov/Galerkin (SUPG) and pressure-stabilizing Petrov/Galerkin
(PSPG) [27] stabilization techniques is employed to solve, both, the flow and the adjoint equa-
tions. The limited memory-Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [28] is used
to minimize the objective function. The airfoil shape is parametrized by a 4th order non-uniform
rational B-splines curve(NURBS) [29].

2. GOVERNING EQUATIONS

2.1. Flow equations

Consider a domain �, with boundary �, that is occupied by a fluid of density � and dynamic
viscosity �. The governing equations for a steady incompressible flow of this fluid are given as:

�u.∇u+∇.r= f on � (1)

∇.u=0 on � (2)

where u is the velocity, r the stress tensor and f the body force. For a Newtonian fluid the stress
tensor is given as r=−pI+�[∇u+(∇u)T] where, p is the pressure and I the identity tensor. The
boundary conditions are either on the flow velocity or stress. Both, Dirichlet and Neumann type
boundary conditions are accounted for:

u=g on �g (3)

n.r=h on �h (4)

where, n is the unit normal vector on the boundary �. Here, �g and �h are the subsets of the
boundary �. More details on the boundary conditions are given in Figure 1. The drag and lift
force, (D, L), on the body can be calculated using the following expression:

(D, L)=
∫

�B

rnd� (5)

where, �B represents the surface of the body.

2.2. The continuous adjoint approach

Let �B be the segment of the boundary, �, whose shape is to be determined. Let b=(�1, . . . ,�m)

be the set of shape parameters that govern its shape. Further, an objective function, Ic(U,b), is
defined that depends on the flow variables U=(u, p) and shape parameters b. The optimization
problem involves determining the shape parameters that minimize (or maximize) the objective
function, Ic(U,b).
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Figure 1. Schematic of the problem set-up: boundary conditions. �U , �D and �S are the upstream,
downstream and lateral boundaries, respectively and �B is the body surface.

The flow Equations (1) and (2) may be written as �=(�u,�p), where �u is the momentum
equation and �p the continuity equation. These equations have to be satisfied for the flow variables
U=(u, p) that minimize (or maximize) the objective function, Ic(U,b). Therefore, the flow equa-
tions seem to appear as constraint conditions on the objective function. An augmented objective
function is constructed to convert the constrained problem to an unconstrained one. The flow equa-
tions are augmented to the original objective function by introducing a set of Lagrange multipliers
or adjoint variables, W=(wu,�p).

I = Ic+
∫

�
�.�d� (6)

It can be noticed that the augmented objective function degenerates to the original one if the flow
variables, U, satisfy Equations (1) and (2). Using principles of variational calculus, the variation
of the augmented objective function is calculated as:

�I = �I
�U

�U+ �I
�b

�b+ �I
�W

�W (7)

It is seen from Equation (7) that �I depends on variations of U, b and W. These variations are
given as:

�I
�W

=�(U,b) (8)

�I
�U

=
(

�Ic
�U

+
∫

�
WT ��

�U
d�

)
(9)

�I
�b

=
(

�Ic
�b

+
∫

�
WT ��

�b
d�

)
(10)

The optimal solution is achieved when the variation of the augmented objective function vanishes,
i.e. �I =0. For this equation to be satisfied, the derivative of I with respect to each of the three
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parameters, i.e. the expressions in relations (8)–(10) should go to zero. Relation (8) leads to the
flow Equations (1) and (2). Relation (9) results in the adjoint equations which can be utilized to
compute the adjoint field. More details are given in the next section. The gradient of the augmented
objective function, as given by relation (10), quantifies the sensitivity of the objective function
with respect to the design parameters. It is utilized to refine the direction of search of the optimal
shape parameters. The optimal solution is obtained when the gradient approaches zero.

2.3. Adjoint equations

The equations and boundary conditions for the adjoint variables are obtained by setting the expres-
sion given in (9) to zero. This leads to:

�(∇u)Twu−�(u.∇)wu−∇.r� =0 on � (11)

∇.wu=0 on � (12)

where r� is similar to the stress tensor and is given by r� =−�pI+�[∇wu+(∇wu)T]. The
variables wu and �p are referred to as the adjoint velocity and adjoint pressure, respectively. Unlike
the flow equations the equations for the adjoint variables are linear. The boundary conditions on
the adjoint variables are:

wu=0 on �U (13)

s=0 on �D (14)

s1=0, �u2=0 on �S (15)

−
∫

�B

�(r.n).wu d�dt+ �Ic
�u

�u+ �Ic
�p

�p=0 on �B (16)

where, s={uwu−�p+�[∇wu+(∇wu)T]}.n. �U , �D and �S are the upstream, downstream and
lateral boundaries and �B is the body surface (see Figure 1). The boundary conditions on the
surface of the body depend on the definition of the objective function. This is illustrated with an
example. Let Ic= 1

2C
2
d , where, Cd is the coefficient of drag acting on the body. This objective

function is useful in designing a body that yields minimum drag coefficient. In this case, it can
be shown that, the boundary conditions for the adjoint variables on the body surface given by
Equation (16) can be simplified to:

�u1=−Cd on �B (17)

�u2=0 on �B (18)

3. FINITE ELEMENT FORMULATION

3.1. The flow equations

The domain � is discretized into elements �e, e = 1,2, . . . ,nel , where nel is the number of
elements. Let Sh

u and Sh
p be the appropriate finite element spaces and Vh

u and Vh
p the weighing

function spaces for velocity and pressure, respectively. The stabilized finite element formulation of
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Equations (1) and (2) is written as follows: find uh ∈Sh
u and ph ∈Sh

p such that ∀wh ∈Vh
u,q

h ∈Vh
p,

∫
�
wh .�(u.∇u−f)d�+

∫
�

�(wh :r(ph,uh))d�

+
∫

�
qh ∇.uh d�+

nel∑
e=1

∫
�e

1

�
(	SUPG�uh .∇wh+	PSPG∇qh)

·[�(u.∇u−f)−∇.r]d�e+
nel∑
e=1

∫
�e

	LSIC∇.wh�∇.uh d�e

=
∫

�h
wh .hh d� (19)

The first three terms and the right-hand side in the variational formulation given by Equation (19)
constitute the Galerkin formulation of the problem. The terms involving the element level integrals
are the stabilization terms added to the basic Galerkin formulation to enhance its numerical stability.
These terms stabilize the computations against node-to-node oscillations in advection dominated
flows and allow the use of equal-in-order basis functions for velocity and pressure. The terms with
coefficients 	SUPG and 	PSPG are based on the SUPG (Streamline-Upwind/Petrov-Galerkin) and
PSPG (Pressure-stabilized/Petrov-Galerkin) method [27]. The term with coefficient 	LSIC is also a
stabilization term based on the least squares of the incompressibility constraint and is found to be
useful for large Reynolds number flows. Equal-in-order basis functions for velocity and pressure,
that are linear in space (three-noded triangular elements) are used. A three point quadrature is
employed for numerical integration.

3.2. The adjoint equations

A stabilized SUPG/PSPG finite element method is proposed to solve the adjoint Equations (11)
and (12). Let Sh

wu
and Sh

�p
be the appropriate finite element spaces and Vh

wu
and Vh

�p
the

corresponding weighting function spaces for the adjoint velocity and adjoint pressure. The stabilized
finite element formulation of Equations (11) and (12) is written as follows: given uh and ph

satisfying Equations (1) and (2), find whu∈Sh
wu

and whp ∈Sh
�p

such that ∀wh
wu

∈Vh
wu

,qh�p
∈Vh

�p
,

∫
�
wh
wu

.�((∇uh)Twhu−u.∇wu)d�+
∫

�
�(wh
wu

) :r�(�h
p,w

h
u)d�

+
∫

�
qh�p

∇.whu d�+
nel∑
e=1

∫
�e

1

�
(−	SUPG�uh .∇wh

wu
+	PSPG∇qh�p

)

·[�((∇uh)Twhu−u.∇wu)−∇.r�(�h
p,w

h
u)]d�e

+
nel∑
e=1

∫
�e

	LSIC∇.wh
wu

�∇.whu d�
e=0 (20)
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The stabilization coefficients 	SUPG, 	PSPG and 	LSIC in the formulation proposed in Equation (20)
are computed based on the flow variables (u, p).

4. PARAMETRIZATION

The form of parametrization determines the choice of the design variables. To carry shape opti-
mization one would like to have a parametrization that offers a rich design space. In the present
work NURBS (Non-Uniform Rational B-Splines) [29] have been used to parametrize the airfoil
geometry. A NURBS curve is defined as:

C(t)=
∑n

i=0 Ni,p(t)wiPi∑n
i=0 Ni,p(t)wi

(21)

Here, n is the number of control points, p is the order of the curve, t is the knot vector, wi is
the weight associated with control point Pi and Ni,p are the B-Spline basis functions given by:

Ni,0=
{
1 if ti�t�ti+1

0 otherwise
(22)

Ni,p = t− ti
ti+p− ti

Ni,p−1(t)+ ti+p+1− t

ti+p+1− ti+1
Ni+p,p−1(t) (23)

A wide range of curves can be obtained by changing the location and weight of the control points
or by changing the knot sequence. In the present work a 4th order NURBS curve with 13 control
points is used to model the surface of the airfoil. Figure 2 shows an example of an attempt to
model a NACA 0012 airfoil. As seen from the figure, the control points 1 and 13 are identical
resulting in a closed curve and an airfoil with sharp trailing edge. In addition, the leading and
trailing edge of the airfoil are fixed to achieve the desired chord length and angle of attack. This
allows us to utilize the remaining 10 control points as design variables. In the present work only
the y-coordinates of the control points are allowed to move. Each of the design variable is allowed
to change between a lower and a upper bound that is specified a priori. The maximum value a
design variable is allowed to change to (ylowmin and yupmax) is shown in Figure 2. The superscripts
‘low’ and ‘up’ refer to the lower and upper surface of airfoil, respectively. In this study ylowmin and
yupmax are set to −0.2 and 0.4 respectively. The other bounds (ylowmax and yupmin) are set so that the
lower and upper surfaces do not cross each other.

5. THE OPTIMIZER

The optimization algorithm used in the present work is the L-BFGS (Limited memory-Broyden-
Fletcher-Goldfarb-Shanno) procedure [28]. This is a limited memory quasi-Newton method for
solving large nonlinear optimization problems that are constrained by upper and lower bounds
on the design variables. The algorithm is well suited for problems when the information for the
second derivative (the Hessian) is difficult to obtain.
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Figure 2. Parametrization of a NACA 0012 airfoil using 4th order NURBS curve with 13 controls points.
The y-coordinates of the control points 2–6 and 8–12 are used as design variables for optimizing the
airfoil. The airfoil surface is shown in broken lines. Upper bounds of the design variables on the upper
surface (yupmax) and the lower bounds of the design variables on the lower surface (ylowmin) are also shown.

Figure 3. Close-up view of the finite element mesh for the NACA 0012 airfoil
at 0◦ angle of attack. The mesh consists of 9828 nodes and 19366 triangular

elements. The surface of the airfoil is discretized using 200 nodes.

6. THE FINITE ELEMENT MESH

An airfoil of unit chord length is placed in a domain whose outer boundary is a rectangle. The
upstream and downstream boundaries are located at 20 chord lengths, each, from the trailing edge
of the airfoil. The lateral boundaries are placed at 10 chord length, each, from the airfoil. A
typical finite element mesh used for computation is shown in Figure 3. It consists of 9883 nodes
and 19 366 triangular elements with 200 nodes on the surface of the airfoil. Close to the airfoil
surface a structured mesh is employed to resolve the boundary layer flow. The remaining domain
is discretized using an unstructured mesh via Delaunay triangulation.

6.1. Mesh convergence study

Two meshes (M1 and M2) are used to compute the flow over the NACA 0012 airfoil at at �=4◦
and Re=250. The details of the meshes are given in Table I. The drag and lift coefficients obtained
for the NACA 0012 are also tabulated. Meshes M1 and M2 are used to obtain an optimal airfoil
having the largest lift coefficient at Re=250. Both the meshes led to the same final shape whose
aerodynamic coefficients are also tabulated in Table I. The optimal solution is discussed later in
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Table I. The lift and drag coefficients of the NACA 0012 airfoil and the optimal airfoil at
�=4◦ and Re=250 for two finite element meshes.

Mesh Nodes Elements Cd (NACA0012) Cl (NACA0012) Cd (Optimal) Cl (Optimal)

M1 9828 19366 0.2563 0.2248 0.2834 0.4870
M2 22872 45338 0.2561 0.2243 0.2829 0.4874
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Figure 4. Flow past NACA 0012 airfoil at low Reynolds numbers: variation of (a) lift coefficient
and (b) drag coefficient with angle of attack.

the paper. Since the difference in the aerodynamic coefficients from the two meshes is less than
0.3%, mesh M1 is used for further computations.

7. FLOW PAST A NACA 0012 AIRFOIL

First we investigate the steady flow past a typical conventional airfoil for Re�500. The variation of
the lift and drag coefficients with respect to the angle of attack for the NACA 0012 airfoil is shown
in Figure 4. At each � the drag coefficient decreases with increase in Re. The variation of the lift
coefficient is approximately linear with � for low values of angle of attack. The departure from
linearity occurs at ��12◦ for Re=10. With increase in Re the range of Re for which the linear
behavior is observed decreases. For example, at Re=500, the Cl −� variation exhibits non-linear
behavior for � beyond 6◦. At angles of attack beyond the linear range the lift curve slope gradually
decreases. Unlike the stall behavior observed at very large Re, at low Re, the Cl −� variation
remains monotonic.

The variation of the lift and drag coefficient at �=4◦ with Re is shown in Figure 5. The drag
coefficient decreases monotonically with increase in Re. The lift coefficient, on the other hand,
exhibits a non-monotonic variation. It decreases with Re for Re<50 and then shows an increasing
trend for 50�Re�175. For Re>175, Cl decreases with increase in Re. To investigate this behavior
we study the variation of the pressure and viscous contribution to the lift with Re. This is shown
in Figure 6. The pressure contribution to the lift coefficient shows a monotonic decreasing trend
with Re. On the other hand, the viscous contribution increases monotonically with Re. In fact,
it is negative for Re<100. The summation of the two contributions results in a non-monotonic
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Figure 5. Flow past a NACA 0012 airfoil at �=4◦: variation of the lift and drag coefficients with Re.
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Figure 6. Flow past a NACA 0012 airfoil at �=4◦: pressure and viscous
contribution to the lift coefficient with Re.

variation of overall Cl with Re. The variation of the lift and drag coefficients at �=12◦ with Re
is shown in Figure 7. Unlike at �=4◦, both, the drag and lift coefficients decrease monotonically
with increase in Re. The variation of Cl with Re is more significant at �=12◦ as compared to the
one at �=4◦.

8. SHAPE OPTIMIZATION

The results presented in the previous section show that the flow past an airfoil is very sensitive
to Re. We now attempt to seek optimal shape of an airfoil at various Re in the regime of steady
laminar flow. The airfoil is parametrized via a 4th order NURBS curve with 10 control points as
design parameters. A mesh moving scheme [26] is utilized to deform the mesh to adopt to a new
airfoil geometry. The initial guess for the design cycle is the NACA 0012 airfoil. The optimization
study is carried out with and without a constraint on the volume enclosed by the airfoil.
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Figure 7. Flow past a NACA 0012 airfoil at �=12◦: variation of the lift and drag coefficients with Re.

8.1. Shape optimization with no constraint on volume

A good airfoil is expected to yield high lift and low drag. In this work we investigate the
relative performance of several objective functions in a design cycle. Five objective functions
(I1, I2, I3, I4, I5) are considered. They are given as:

I1=+ 1
2C

2
d (24)

I2=− 1
2C

2
l (25)

I3=−1

2

(
Cl

Cd

)2

(26)

I4=− 1
2C

2
l + 1

2C
2
d (27)

I5=+ 1
2C

2
d + 1

2 (Cl −C◦
l )

2 (28)

The objective function, I1, minimizes the drag coefficient, I2 maximizes the lift coefficient while
I3 maximizes the lift to drag ratio. The fourth objective function, I4, maximizes the lift coefficient
and minimizes the drag coefficient, simultaneously. The fifth objective function, I5, minimizes the
drag coefficient while the lift coefficient is held constant at a value of C◦

l .

8.1.1. �=4◦. Minimizing Cd(I1): At zero angle of attack, of all the possible airfoils of given
chord length, the flat plate results in the smallest drag. Here, we wish to find out as to what the
optimal shape is for non-zero angle of attack. The first column of Figure 8 shows the final shapes
obtained at various Re. A thin curved surface is obtained at all Re. This is the thinnest possible
shape that the present parametrization can provide. The shape parameters have been assigned
constraints so that the upper and lower surfaces do not cross each other and lead to a breakdown
of the computation. Compared to a NACA 0012 airfoil the final geometry shows a reduction in
drag of 7% and 10.5%, approximately, at Re=10 and 500. The Cl , Cd and Cl/Cd of the optimal
shapes at various Re are listed in Table II.

Maximizing Cl(I2): The final shapes obtained with objective function I2 at various Re are shown
in the second column of Figure 8. Except at Re=10, at all other Re, shape parameters on the lower
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Re=10

Re=50

Re=100

Re=250

Re=500

min C max Cd l max C /Cd min C  & C =0.3dl max C  & min Cl ld

Figure 8. Optimal airfoil shapes obtained with objective functions I1, I2, I3, I4
and I5 at various Re. The angle of attack is 4◦.

Table II. Drag and lift coefficients of the final shapes at �=4◦ obtained using various
objective functions at different Re.

10 50 100 250 500

Re Cd Cl Cd Cl Cd Cl Cd Cl Cd Cl

NACA 0012 1.661 0.238 0.627 0.222 0.423 0.224 0.256 0.224 0.178 0.219
I1 1.542 0.362 0.567 0.413 0.380 0.452 0.229 0.501 0.159 0.527
I2 1.967 0.663 0.700 0.524 0.461 0.500 0.283 0.487 0.203 0.419
I3 1.796 0.605 0.650 0.512 0.447 0.500 0.290 0.263 0.212 0.397
I4 1.542 0.362 0.615 0.487 0.433 0.508 0.271 0.488 0.198 0.443
I5 1.542 0.362 0.572 0.377 0.389 0.351 0.238 0.329 0.165 0.319

surface of the airfoil reach their specified upper bounds. At Re�50 the optimal shapes appear to be
very similar to that of a conventional airfoil. However, the shape at Re=10 is quite different. It has
high thickness close to the leading and trailing edges and the maximum thickness to chord ratio is
larger than 40%. Compared to NACA 0012 airfoil it results in a 178% increase in lift coefficient.
The pressure distribution of the optimal airfoil along with that of the NACA 0012 airfoil is shown
in Figure 9. The peak suction on the optimal airfoil is much larger. Also, the pressure on the lower
surface is higher for the optimal airfoil, compared to that on NACA 0012 airfoil. This leads to
enhanced lift on the optimal airfoil geometry. The flow and adjoint fields for the final shape at
Re=10 are shown in Figure 10. The flow remains attached over the entire chord length. With
increase in Re the maximum thickness of the airfoil decreases. To see whether the final shapes
obtained are global or local optima, a different initial guess is used to obtain the optimal shape at
Re=250. The final shapes obtained along with the different initial guesses are shown in Figure 11.
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Figure 9. Pressure distribution of the optimal airfoil obtained with objective
function I2 at Re=10 and �=4◦.

(a) 0.00 1.12 0.00 1.37(b)

Figure 10. Optimal shape for maximization of the lift coefficient at �=4◦, Re=10: (a) magnitude of the
flow velocity and (b) magnitude of adjoint velocity.

Compared to the final shape obtained by using NACA 0012 airfoil, the other shape generates 8.5%
lesser lift. In both the cases all the control points on the lower surface reach their specified upper
bounds. Only the control points on the upper surface adapt to give an optimal shape. The existence
of two optima suggests the possibility of the lift coefficient being an oscillatory function of the
design variable having multiple local optima. To understand this further, the variation of the lift
coefficient with the design variables is obtained for both the optimal shapes. Only control point 8,
as shown in Figure 2, is allowed to move. The variation of the lift coefficient with location of the
control point is shown in Figure 12. The variation is seen to be non-monotonic and different for
both the shapes, thereby confirming the existence of more than one local optima. The lift and drag
coefficients of the optimal airfoil at various Re are listed in the third row of Table II. The iteration
history of the lift and drag coefficient is shown in Figure 13. In most cases 10−15 iterations in
the design cycle are enough to achieve the desired objective.

Maximizing Cl/Cd(I3): The final shapes obtained with objective function I3 are shown in the
third column of Figure 8. At Re=10, an airfoil with a bulbous leading edge followed by a thin
curved surface is obtained. This shape has a lift to drag ratio that is 135% more than that of a NACA
0012 airfoil. With increase in Re the extent of the thin curved surface decreases. For Re=250 and
Re=500 the Cl/Cd for the shapes at the end of the design cycle is only marginally higher than
that of NACA 0012 airfoil. The present optimization algorithm can only locate the closest local
maxima/minima. Computation with different initial guesses lead to geometries with better Cl/Cd .
However, those results are not being shown here as we wish to compare the performance of all
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Figure 11. Optimal shapes obtained with two different initial guesses for
maximization of the lift coefficient at �=4◦, Re=250.
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Figure 12. Variation of the lift coefficient with respect to control
point 8 (as shown in Figure 2) for the final shape obtained using

objective function I2 at �=4◦, Re=250.

the objective functions with respect to same initial guess. The lift and drag coefficients of the final
shapes are listed in second last row of Table II.

Maximizing Cl and minimizing Cd(I4): The objective function I4 consists of two terms.
Depending on the relative size of the terms their contribution to the objective function is different.
For the NACA 0012 airfoil the lift to drag ratio is less than unity for Re=10 and larger than unity
for Re=500. Therefore, at low Re, it is expected that the objective function I4 will have more
relative weightage on minimizing Cd than on maximizing Cl . Similarly, at Re=500 it is expected
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Figure 13. Maximization of the lift coefficient at �=4◦: (a) iteration history of
the lift coefficient and (b) drag coefficient.

that maximizing Cl will contribute relatively more to I4 than minimizing Cd . The final shapes with
objective function I4 are shown in the fourth column of Figure 8. The optimal shape at Re=10 is
a thin curved surface, similar to the shape obtained using objective function I1. The optimal shape
at Re=500 has a Cl that is twice that of the NACA 0012 airfoil and the shape is closer to that
obtained with maximizing Cl . The lift and drag coefficients of the finals shapes are listed in the
second last row of Table II.

Minimizing Cd for a specified Cl(I5): The objective function I5 is a combination of a direct and
an inverse objective function [18]. This function seeks a surface that has the least drag coefficient
and a specified lift coefficient, Cl =C◦

l . Similar to I4, the contribution of the two terms to the
objective function is different. For �=4◦, C◦

l is specified to be 0.3. The fifth column of Figure 8
shows the final shapes obtained with this objective function. For all the Re considered, the direct
objective contributes more than the inverse objective to I5. At Re=10, the final shape obtained is
similar to the one obtained from I1. With increase in Re the contribution of the drag component
decreases. The thickness of the optimal shape increases with increase in Re. The lift coefficient
approaches the desired lift coefficient with increase in Re. The drag at all Re is lesser than that
for NACA 0012 airfoil. The lift and drag coefficients of the final shapes are tabulated in the last
row of Table II.

Relative performance of various objective functions: Figure 14 shows the summary of the aero-
dynamic coefficients obtained with different objective functions at �=4◦ and various Re. One
would expect that at each Re, amongst the four shapes obtained with different objective functions
the one obtained with I2 should result in maximum lift. Similarly, the shape obtained with I1
should result in minimum Cd and the one obtained with I3 should give maximum Cl/Cd . Figure 14
shows some surprising results. At Re=100, I4 leads to maximum Cl . Also the maximum Cl/Cd
is produced by the shape resulting from I1 and not from I3, for Re�100. The objective function
I5 does not produce any non-intuitive result. Using I5, it is possible to obtain a shape having the
desired lift coefficient. However, this would require assigning suitable relative weights to the two
terms in the objective function.

8.1.2. �=12◦. Minimizing Cd(I1): The final shapes obtained with objective function I1 at �=12◦
are shown in the first column of Figure 15. As is the case at �=4◦, a thin curved surface is obtained
at Re=10 and 50. At Re=100, 250 and 500 the optimal shapes are thicker. They have a negative
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Figure 14. Aerodynamic coefficients of the final shapes obtained from the considered objective function
at �=4◦: (a) lift coefficient; (b) drag coefficient; and (c) lift to drag ratio.

camber which increases with increase in Re. It is somewhat surprising that the optimal shape at
Re=500 is thicker than the one at Re=10. To study the this we investigate the flow at Re=500
for three geometries: (a) NACA 0012 airfoil (b) the optimal airfoil obtained at Re=500 and (c)
the optimal airfoil obtained at Re=10. The pressure and viscous components of drag for these
geometries are listed in Table III. The optimal airfoil for Re=500 has lesser drag than the thin
airfoil obtained as an optimal solution at Re=10. The pressure component of the drag is 4% lesser
while the viscous component is only about 1% lesser. The flow and the adjoint fields over the final
shape at Re=500 are shown in Figure 16. The lift and drag coefficients of the optimal shapes at
all the Re studied are shown in Figure 17 and listed in Table IV.

Maximizing Cl(I2): The final shapes obtained with objective function I2 are shown in second
column of Figure 15. At Re=10, an airfoil with a small bulbous leading edge followed by a thin
curved surface is obtained. With increase in Re, the location of the maximum thickness moves aft
of the leading edge. The optimal shape at Re=500 is similar to that of a conventional airfoil. The
optimal shape at Re=10 has 45% more Cl than NACA 0012 airfoil while at Re=500 the increase
in Cl is only 30%. The lift and drag coefficients are listed in Table IV.

Maximizing Cl/Cd(I3): The final shapes obtained with objective function I3 are shown in the
third column of Figure 15. Except at Re=10, a thin curved surface is obtained at all other Re.
At Re=10 the final shape has 39% more Cl/Cd than NACA 0012 airfoil while at Re=500 an
increase of 87% is obtained. At Re=500 the shapes resulting from I1 and I3 are quite different.
Yet, interestingly the drag coefficients associated with the two shapes are very similar. The lift and
drag coefficients for shapes obtained with I3 are listed in the second last row of Table IV.
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min C max Cd l max C /Cd dl max C  & min Cl ld min C  & C =0.5

Figure 15. Optimal airfoil shapes obtained with objective functions I1, I2, I3, I4 and I5
at various Re. The angle of attack is 12◦.

Table III. Re=500, �=12◦ flow past an airfoil: comparison of the pressure and viscous
components of the drag coefficient for various shapes, (a) NACA 0012 airfoil (b) optimal

airfoil for Re=500 and (c) optimal airfoil for Re=10.

S.No. Shape Cd (pressure) Cd (viscous)

(a) NACA 0012 0.11498 0.10477
(b) Optimal airfoil (min Cd ) for Re=500 0.11386 0.10158
(c) Optimal airfoil (min Cd ) for Re=10 0.11849 0.10223

Maximizing Cl and minimizing Cd(I4): The final shapes obtained with objective function I4 are
shown in the fourth column of Figure 15. The lift and drag coefficients are listed in the second
to last row of Table IV. At Re=10, Cd decreases by 4.7% and Cl increases by 30% while at
Re=500 both Cd and Cl increase by 6.1% and 36.5%, respectively. If the objective is to maximize
lift and minimize drag, simultaneously then both the terms in the objective function, I4, should
have comparable contributions. As is seen at �=4◦, the lift to drag ratio of the NACA 0012 airfoil
at �=12◦ varies from less than unity at Re=10 to more than unity at Re=500. Therefore at low
Re, the shapes resulting from I4 are same as that from minimizing drag, at Re=500, the shapes
from I4 and I2 are very similar.

Minimizing Cd at specified C◦
l (I5): The final shapes obtained with objective function I5 are

shown in the fifth column of Figure 15. The desired lift coefficient C◦
l is specified to be 0.5. Similar

to the results at �=4◦, the final shape at Re=10 is a thin curved plate akin to the result obtained
using I1. At higher Re, with the continuously decreasing contribution of the drag to the objective
function, the lift coefficient is seen to approach the desired lift. The lift and drag coefficients of
the final shapes are listed in the last row of Table IV.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:355–381
DOI: 10.1002/fld



372 D. N. SRINATH AND S. MITTAL

(a) 0.00 1.31 0.00 0.02(b)

Figure 16. Optimal shape while minimizing the drag coefficient at �=12◦, Re=500: (a) magnitude of
the flow velocity (b) magnitude of adjoint velocity.
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Figure 17. Aerodynamic coefficients of the final shapes obtained from the considered objective function
at �=12◦: (a) lift coefficient (b) drag coefficient and (c) lift to drag ratio.

Relative performance of various objective functions: Figure 17 shows the variation of the aero-
dynamic coefficients with Re obtained with different objective functions. As is observed at �=4◦,
least Cd is produced by the shapes arising from objective function I1. However, the airfoil with
largest Cl does not always come from the satisfaction of I2. For example, at Re�100 I3 results in
shapes with highest Cl . The largest Cl/Cd is mostly produced by shapes that are outcome of I3.
As expected, I4 results in shapes that resemble the ones from I1 at low Re and those that look like
the ones from I2 at larger Re. I5 does not lead to any interesting solution, unless suitable relative
weights are defined for the two terms in the objective function. Therefore, the use of I4 and I5 do
not seem to add any useful information and are dropped in the remaining study.
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Table IV. Drag and lift coefficients of the final shapes at �=12◦ obtained using various
objective functions at different Re.

10 50 100 250 500

Re Cd Cl Cd Cl Cd Cl Cd Cl Cd Cl

NACA 0012 1.728 0.625 0.679 0.594 0.473 0.582 0.302 0.529 0.221 0.449
I1 1.632 0.815 0.641 0.860 0.449 0.852 0.291 0.782 0.214 0.684
I2 1.792 0.903 0.728 0.849 0.537 0.788 0.323 0.683 0.238 0.584
I3 1.672 0.842 0.641 0.860 0.449 0.886 0.292 0.884 0.218 0.829
I4 1.647 0.816 0.669 0.863 0.5 0.842 0.318 0.716 0.234 0.613
I5 1.632 0.815 0.669 0.612 0.470 0.564 0.301 0.524 0.217 0.504

8.2. Shape optimization with volume constraint

A geometric constraint is added to the objective functions. We now seek to generate airfoil shapes
that enclose a prescribed volume. The following modified objective functions are considered:

Iv1= 1
2C

2
d +
 12 (V −Vo)

2 (29)

Iv2=− 1
2C

2
l +
 12 (V −Vo)

2 (30)

Iv3=−1

2

(
Cl

Cd

)2

+

1

2
(V −Vo)

2 (31)

where Vo is the volume enclosed by NACA 0012 airfoil and 
 is the relative weight factor for
the two objectives. It has been our experience that if 
 is too small, the volume constraint is not
adequately satisfied while if it is too large the aerodynamic constraint does not yield the best
results. The computations were carried out for various values of 
. The results reported here are for

=1000 for Iv1 and Iv2 and 
=10000 for Iv3. The objective function I4 is dropped in this study
because it has been shown not to lead to results that are better than the ones obtained with I1–I3.
These objective functions are a mix of a direct and inverse problems. The volume constraint is
inverse in nature while the aerodynamic contribution to the objective function is direct in nature.

8.2.1. �=4◦. Figure 18 shows the final shapes obtained with with various objective functions.
The first column shows the shapes obtained with Iv1. The final shapes at various Re are seen to
have negative camber. The optimal shape at Re=10 shows 1.5% reduction in Cd compared to a
NACA 0012 airfoil, while the reduction observed at Re=500 is 1%. The final shapes obtained with
objective function Iv2 are shown in the second column of Figure 18. Similar to the case without
any constraints, the final shape at Re=10 has a thickness to chord ratio of over 40% with high
thickness close to the leading and trailing edges. Compared to the NACA 0012 airfoil, the final
shape at Re=10 has 178% more lift while at Re=500 the increase is 94%. The shapes for Re=50
to 250 have an upper surface with a slight dimple at around 20% chord. To investigate the reason
for this occurrence, the optimal shape at Re=250 is slightly modified and studied. The upper
surface of the optimal airfoil obtained at Re=250 is straightened to remove the dimple. It is seen
that the original optimal airfoil has 3% larger lift coefficient than the modified airfoil. The optimal
airfoil and the modified airfoil are shown in Figure 19 along with their pressure distribution. The
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Figure 18. Optimal airfoil shapes obtained with objective functions Iv1, Iv2 and
Iv3 at various Re. The angle of attack is 4◦.
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Figure 19. Pressure distribution over the optimal airfoil (Iv2) and a modified
airfoil at Re=250 along with their shapes.
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(a) (b)

Figure 20. Pressure distribution over (a) optimal airfoil (Iv2) and (b) modified airfoil at Re=250.

Table V. Drag and lift coefficients of the final shapes at �=4◦ obtained using various
objective functions that include the volume constraint at different Re.

10 50 100 250 500

Re Cd Cl Cd Cl Cd Cl Cd Cl Cd Cl

NACA 0012 1.661 0.238 0.627 0.222 0.423 0.224 0.256 0.224 0.178 0.219
Iv1 1.636 0.265 0.619 0.233 0.419 0.229 0.254 0.225 0.176 0.218
Iv2 1.911 0.657 0.707 0.517 0.479 0.497 0.300 0.458 0.211 0.426
Iv3 1.897 0.645 0.697 0.504 0.474 0.476 0.288 0.405 0.195 0.363

Table VI. The volume enclosed by the final shapes for various objective functions at �=4◦.
The percentage, with respect to Vo, is shown in parentheses.

Re 10 50 100 250 500
Vo 0.08 0.08 0.08 0.08 0.08
Iv1 0.0774 (96.75%) 0.0793 (99.125%) 0.0796 (99.5%) 0.0789 (98.625%) 0.0799 (99.875%)
Iv2 0.0802 (100.25%) 0.0814 (101.75%) 0.0793 (99.125%) 0.0806 (100.75%) 0.0792 (99.00%)
Iv3 0.0799 (99.875%) 0.0800 (100.00%) 0.0802 (100.25%) 0.0792 (99.00%) 0.0782 (97.75%)

pressure field for the two cases is shown in Figure 20. The peak suction on the optimal airfoil is
seen to be larger, reflecting the role of dimple.

The third column of Figure 18 shows the final shapes obtained with objective function Iv3.
Except at Re=10, the optimal shapes at other Re appear to be very similar to a conventional airfoil.
At Re=10, the final shape has high thickness close to the leading and trailing edges. As compared
to the NACA 0012 an improvement of 137% in Cl/Cd is seen at Re=10, while at Re=500 the
improvement is 86%. The lift and drag coefficients of the optimal shapes for various objective
functions are listed in of Table V. The volume of the optimal shapes along with the percentage
deviation from the prescribed volume are listed in Table VI. The maximum deviation is a mere
3%. Almost all the optimal shapes have volume very close to the sought value.

Relative performance of the three objective functions: In general, Cd for the NACA 0012 airfoil
appears to be very close to Cd for the optimal shapes obtained with various objective functions as
shown in Table V. However, Cl is quite different. Figure 21 shows the variation of the aerodynamic
coefficients with Re obtained with various objective functions. Unlike in the earlier cases without
the volume constraint, Iv1 and Iv2 always leads to the design with lowest Cd and highest Cl ,
respectively. However, the surprising observation is regarding the maximization of Cl/Cd . Iv3 fails
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Figure 21. Aerodynamic coefficients of the final shapes obtained from the considered objective function that
includes the volume constraint at �=4◦: (a) lift coefficient; (b) drag coefficient; and (c) lift to drag ratio.

to outperform the results from Iv2. As is seen from Figure 18, the geometries from Iv2 and Iv3
are quite similar. However, in general the airfoil shapes in the second column of Figure 18 are
more aerodynamically efficient than the ones in the third column. Another interesting effect of the
volume constraint is on the trailing edge angle. Most shapes obtained without volume constraint
are associated with a trailing edge that is close to a cusp. The volume constraint results in airfoils
with finite trailing edge angle.

8.2.2. �=12◦. The final shapes obtained with various objective functions are shown in Figure 23.
The first column shows the shapes obtained with Iv1. The optimal shapes at all Re, except at Re=10,
are very similar to the NACA 0012. A reduction of 3% in Cd is seen at Re=10, while at Re=500
the reduction is only 1.5%. The second column of Figure 23 shows the final shapes obtained with
objective function Iv2. All the optimal shapes have a conventional camber line. Except at Re=250
the final shapes at other Re have a ‘tadpole’ shape. The final shape at Re=250 appears very similar
to the NACA 0012 airfoil. A different initial guess is used to calculate the the optimal solution at
Re=250. The optimal solutions obtained with the two initial guesses are shown in Figure 22(a).
The second shape produces 0.8% more lift than the first one. In both the cases the design variables
do not hit their bounds and, therefore, the gradient of the objective function achieves close to
zero value. To check whether both are indeed optimal and stationary values, the variation of the
objective function Iv2 with respect to the design variable 9 (as shown in Figure 2) is computed
around the optimal value. The variation is shown in Figure 22(b). It is seen that Iv2 achieves local
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Figure 22. (a) Optimal shapes obtained with two different initial guesses at Re=250 and �=12◦
for objective function Iv2 and (b) variation of the objective function Iv2 with respect to design

variable �9 for both optimal shapes.
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Figure 23. Optimal airfoil shapes obtained with objective functions Iv1, Iv2 and Iv3 at
various Re. The angle of attack is 12◦.

minima at both the optimal values. This confirms the oscillatory nature of the objective function
with respect to the design variables.

An increase of 42% in Cl is seen at Re=10 while at Re=500 the increase in Cl is 16.5%. The
final shapes obtained with objective function Iv3 are shown in the third column of Figure 23. As
in the previous case, optimal shapes at various Re have a conventional camber line. The maximum
improvement in Cl/Cd as compared NACA 0012 airfoil is 30% and is obtained at Re=10. The
lift and drag coefficients of the optimal shapes are listed in Table VII.
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Table VII. Drag and lift coefficients of the final shapes at �=12◦ obtained using various objective functions
that include the volume constraint at different Re.

10 50 100 250 500

Re Cd Cl Cd Cl Cd Cl Cd Cl Cd Cl

NACA 0012 1.728 0.625 0.679 0.594 0.473 0.582 0.302 0.529 0.221 0.449
Iv1 1.679 0.625 0.674 0.589 0.468 0.577 0.300 0.526 0.218 0.451
Iv2 1.878 0.886 0.784 0.811 0.540 0.665 0.309 0.550 0.267 0.523
Iv3 1.846 0.871 0.757 0.802 0.508 0.712 0.321 0.620 0.229 0.559

Relative performance of the three objective functions: Figure 24 shows the variation of the aero-
dynamic coefficients with Re obtained with various objective functions at �=12◦. For �=12◦
the NACA 0012 airfoil appears to be very close to optimal for minimum Cd for Re�50. The
effect of � for obtaining optimal performance is clearly seen on comparing Figures 18 and 23.
Unlike at �=4◦, the objective function Iv3 results in very good designs. For Re>100 it outper-
forms Iv2 and leads to larger Cl . The Cd obtained is also very comparable to that obtained
with Iv1.

8.3. Effect of the number of design variables

The number of design variables, for a given form of parametrization, plays a crucial role in obtaining
an optimal shape. More the design variables, the richer is the design space. One possibility is
to use the surface coordinates themselves as design variables [8]. However this can make the
computations very expensive and may also lead to non smooth surfaces. To study the effect of the
number of design variables, three different parametrization of the NACA 0012 are used to obtain
an optimal surface. The objective is to obtain an optimal surface having the largest lift coefficient
at �=4◦ and Re=250. The three parametrization have 13, 19 and 27 control points, respectively.
The control polygon along with the control points of the three parametrization are shown in the
first column of Figure 25. The second column of Figure 25 shows the surfaces that result from
the optimization. The optimal shape obtained with 13 control points leads to a conventional airfoil
while the other two parametrization lead to shapes whose trailing edge thickness progressively
increases. The lift coefficient also increases with increase in the number of control points. In any
situation the number of design variables one can use is limited by available resources and other
constraints such as the simplicity of optimal geometry. This study shows the relevance of the
number of design variables in shape optimization.

9. CONCLUSIONS

A continuous adjoint approach for shape optimization of airfoils in steady low Reynolds number
flows has been implemented. A stabilized finite element method based on SUPG/PSPG stabilization
has been used to solve, both, the flow and adjoint equations. The airfoil shape is represented by a
NURBS curve. The y-coordinates of the control points have been used as design variables.

Flow over a NACA 0012 airfoil is studied at Re�500. Flow is seen to be sensitive to, both, Re
and �. For low �, the slope of Cl −� curve is seen to be linear. Nonlinear behavior is observed for
�>6◦. Unlike the stall behavior observed at higher Re, the Cl −� variation remains monotonic for
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Figure 24. Aerodynamic coefficients of the final shapes obtained from the considered objective function that
include the volume constraint at �=12◦: (a) lift coefficient; (b) drag coefficient; and (c) lift to drag ratio.
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Figure 25. �=4◦, Re=250 flow past an airfoil: The distribution of the control points is shown on left
and the optimal geometry obtained is shown on the right for (a) 13; (b) 19; and (c) 27 control points.

Re�500. The effect of Re is investigated in detail for �=4◦ and 12◦. At �=4◦, Cl shows a non-
monotonic variation with Re at Re∼50. This is caused by the fact that the pressure contribution to
Cl decreases while the viscous contribution increases with increase in Re. At �=12◦, Cl decreases
quite significantly with increase in Re. Cd is found to decrease with increase in Re for, both, �=4◦
and 12◦.

Five different objective functions are evaluated to obtain an optimal airfoil. They are (1) minimize
drag (I1), (2) maximize lift (I2), (3) maximize lift to drag ratio (I3), (4) maximize lift and minimize
drag (I4) and (5) minimize drag coefficient at constant lift (I5). Optimal shapes are obtained for
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Re�500 at �=4◦ and 12◦. Airfoils with least Cd are produced by shapes arising from the objective
function I1. However, it is seen that shape with largest Cl does not always result from objective
function I2. I3 produces the shapes with the largest Cl/Cd . I4 is seen to be biased towards the
larger contributor to the objective function. At low Re, when Cd is the larger contributor, the
shapes obtained are similar to the ones obtained from I1. At high Re, the optimal shapes resemble
the ones obtained from I2 since the larger contributor to I4 is Cl . I5 is also seen to be dependent
on the larger contributor amongst the two terms to the objective function.

A volume constraint is added to the objective functions (Iv1, Iv2, Iv3) and the study is repeated.
Again, the shapes with the least Cd are obtained from the objective function Iv1. As is the case
without volume constraint, no objective function shows a clear preference while maximizing the
lift coefficient. This study demonstrates the necessity to consider several objective function to
reach an optimal design while using an algorithm that seeks local optima. It is shown that the
objective functions have an oscillatory nature with respect to the design variable and, therefore,
have multiple local optima. The optimizer, depending on the initial guess, reaches the closest local
optima. The effect of the number of control points on the optimization process is studied. Three
different parametrization having 13, 19 and 27 NURBS control points are used. It is seen that with
more design variables, the design space gets richer and the optimizer is able to determine a better
solution. But this comes at the expense of increased computation.

This study clearly brings out the need to create a database for high performance airfoils for low
Re applications. In this work a optimization study has been carried out for two values of � and
different shapes have been obtained. It is worthwhile to extend the study to find an optimal shape
that gives good performance for a range of �. The work is also being extended to find optimal
geometries for unsteady flows.
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